55 research outputs found

    A Greedy Link Scheduler for Wireless Networks with Fading Channels

    Full text link
    We consider the problem of link scheduling for wireless networks with fading channels, where the link rates are varying with time. Due to the high computational complexity of the throughput optimal scheduler, we provide a low complexity greedy link scheduler GFS, with provable performance guarantees. We show that the performance of our greedy scheduler can be analyzed using the Local Pooling Factor (LPF) of a network graph, which has been previously used to characterize the stability of the Greedy Maximal Scheduling (GMS) policy for networks with static channels. We conjecture that the performance of GFS is a lower bound on the performance of GMS for wireless networks with fading channel

    Delay Optimal Secrecy in Two-Relay Network

    Full text link
    We consider a two-relay network in which a source aims to communicate a confidential message to a destination while keeping the message secret from the relay nodes. In the first hop, the channels from the source to the relays are assumed to be block-fading and the channel states change arbitrarily -possibly non-stationary and non-ergodic- across blocks. When the relay feedback on the states of the source-to-relay channels is available on the source with no delay, we provide an encoding strategy to achieve the optimal delay. We next consider the case in which there is one-block delayed relay feedback on the states of the source-to-relay channels. We show that for a set of channel state sequences, the optimal delay with one-block delayed feedback differs from the optimal delay with no-delayed feedback at most one block

    Linear Block Coding for Efficient Beam Discovery in Millimeter Wave Communication Networks

    Full text link
    The surge in mobile broadband data demands is expected to surpass the available spectrum capacity below 6 GHz. This expectation has prompted the exploration of millimeter wave (mm-wave) frequency bands as a candidate technology for next generation wireless networks. However, numerous challenges to deploying mm-wave communication systems, including channel estimation, need to be met before practical deployments are possible. This work addresses the mm-wave channel estimation problem and treats it as a beam discovery problem in which locating beams with strong path reflectors is analogous to locating errors in linear block codes. We show that a significantly small number of measurements (compared to the original dimensions of the channel matrix) is sufficient to reliably estimate the channel. We also show that this can be achieved using a simple and energy-efficient transceiver architecture.Comment: To appear in the proceedings of IEEE INFOCOM '1

    To Obtain or not to Obtain CSI in the Presence of Hybrid Adversary

    Full text link
    We consider the wiretap channel model under the presence of a hybrid, half duplex adversary that is capable of either jamming or eavesdropping at a given time. We analyzed the achievable rates under a variety of scenarios involving different methods for obtaining transmitter CSI. Each method provides a different grade of information, not only to the transmitter on the main channel, but also to the adversary on all channels. Our analysis shows that main CSI is more valuable for the adversary than the jamming CSI in both delay-limited and ergodic scenarios. Similarly, in certain cases under the ergodic scenario, interestingly, no CSI may lead to higher achievable secrecy rates than with CSI.Comment: 8 pages, 3 figure
    • …
    corecore